
Introduction to the

Eric Bollens
ebollens AT oit.ucla.edu

Mobile Web Framework Architect
UCLA Office of Information Technology

December 14, 2011

1.  The Mobile Landscape

2.  Approaching Mobile

3.  A Web-based Solution

4.  Principles and Strategies

5.  Framework Semantics & Tools

•  Mobile is soon to overtake the desktop.

•  In higher education:

–  Currently, over 60% of students have an internet-
capable device.

–  Within a year, over 75% of students will have an
internet-capable mobile device.

•  “Students are more likely to remember their
cell phone than their wallet.”

General�Overview�of�Mobile�Space

By�2013,�mobile�phones�will�overtake�PCs�as�the�most�common�Web�access�device�
worldwide.
http://www.gartner.com/it/page.jsp?id=1278413

•  Diverse, rapidly changing landscape:

–  Devices

–  Operating systems

–  Browsers

•  A lack of resources or experience

–  Which platform do we develop for first?

–  Where can I find developers for each platform?

–  How can we keep up with new platforms?

•  Not a priority

–  Doesn’t our website already work on mobile?

–  Why does it warrant the time and cost?

1.  Deliver rich mobile content

2.  Reduce the cost to mobilize

3.  Minimize maintenance costs

4.  Avoid the hassle of “keeping up”

•  Rich set of features

•  Centralized distribution platforms

•  Device-specific development

•  Varied paradigms and architectures

•  Rise and fall of native platforms

•  Manual updates

•  Single established platform

•  Existing paradigms and architecture

•  Automatic updates

•  Mixed support between devices

•  New and evolving API

•  No central distribution platform

•  Simplifies mobile development process

–  Standard web technologies

•  Reduces costs for development

–  Don’t have to develop for each device separately

•  Compatible with all web-capable devices

–  New devices don’t require new code

•  Simplifies mobile development process

–  Standard web technologies

•  Reduces costs for development

–  Don’t have to develop for each device separately

•  Compatible with all web-capable devices

–  New devices don’t require new code

But how do we deal with its limiting factors?

•  Two major issues:

–  Mixed support between devices

–  New & evolving API for the HTML 5 technologies

•  Mixed support between devices

–  A fully compatible markup standard

–  Allow each device the best possible experience

–  No device-by-device planning

•  New & evolving API for HTML 5 technologies

•  Mixed support between devices

–  A fully compatible markup standard

–  Allow each device the best possible experience

–  No device-by-device planning

•  New & evolving API for HTML 5 technologies

–  Devices that can use it, should use it

–  Create support where possible but not available

A Framework!
No, but really...

•  Markup standard

–  Semantic HTML classes and ids

•  Dynamic libraries

–  CSS & Javascript catered to a visitor’s device

–  APIs & scripts for advanced features

•  Native containers

–  Extend to support unsupported features

–  Make available on app stores

•  The minimum requirements:

–  XHTML MP 1.0 (subset of HTML 4.01)

–  WCSS (subset of CSS 2.1)

–  120 x 120 screen

–  JPG and GIF support

–  256 colors

•  No WAP, but practically all modern devices

•  Approach is conducive to federation

•  One central framework installation

–  One unit can manage the framework

–  Changes need to be made in only one place

–  Enables maintenance of a central identity

•  Distributed applications leverage it

–  Language and platform independence

–  Data stays with the data holder

•  Device agnostic

•  Graceful degradation

•  Platform independent

•  Federated architecture

•  Unified presence

•  Modern web standards

•  Works on any device with a web browser.

•  Markup-driven with semantic entities.

Framework	

PHP	

Ruby	

Python	

…	
 .NET	

Java	

Perl	

•  Built on browser-side technologies

•  Supports all languages & environments

•  Application uses semantic HTML entities

•  MWF determines best presentation

•  MWF accounts for support or lack thereof

•  Three basic device classification tiers

•  Deeper device awareness available

•  Create a page with these two tags in HEAD:

<link rel="stylesheet" type="text/css"
 href=”http://m.ucla.edu/assets/css.php">

<script type="text/javascript"
 src=“http://m.ucla.edu/assets/js.php”></script>

•  Start using the MWF!

–  All HTML classes & JS core are always available

–  Additional libraries available on demand

–  Some special assets like compressors

•  An app has a page with the MWF handlers

•  When a user visits the page,

–  the user’s browser requests css.php and js.php

–  the MWF gathers telemetry on the device

–  the MWF classifies device and generates CSS/JS

–  the page is rendered from generated CSS/JS

•  Process is transparent to the app – it uses
CSS classes without concern for the device

•  Base CSS Handler

<link rel=“stylesheet”
 href=“http://m.ucla.edu/assets/css.php”>

•  Base Javascript Handler

<script type=“text/javascript”
 src=“http://m.ucla.edu/assets/js.php”>
 </script>

•  A full-width page header

<h1 id="header”>

 <img
 src=”http://m.ucla.edu/assets/img/ucla-header.png”>

 {HEADER_TEXT}
</h1>

•  A full-width page footer

<div id=”footer”>
 <p>{COPYRIGHT_MESSAGE}

 Help |
 View Full Site
 </p>
</div>

•  A full-width navigation menu

<div class=”menu-full”>
 <h1>{MENU_HEADING}</h1>

 {LINK1_TEXT}
 {LINK1_URL}

</div>

•  A full-width multi-purpose content area

<div class=”content-full”>
 <h1>{CONTENT_HEADING}</h1>
 <p>{TEXT_CONTENT}</p>
</div>

•  A full-width button element:

<div class=“button-full”>

 {BUTTON_TEXT}

</div>

•  Entities support additional properties

–  Padded

–  Light

•  Some specific properties

–  Multi-item buttons

–  Content buttons

•  A two item full-width button element:

<div class=“button-full button-padded button-light”>

 {BUTTON1_TEXT}

 {BUTTON2_TEXT}

</div>

•  Control display for only some classifications

–  .not-basic

–  .only-basic

–  .not-full

–  .only-full

•  Dynamically-defined body telemetry

–  .mwf - If the MWF was able to write classes into the body tag

–  .mwf_mobile - If device is regarded as mobile

–  .mwf_notmobile - If device is regarded as non-mobile

–  .mwf_standard - If device is "standard" classification.

–  .mwf_full - If device is "full" classification.

–  .mwf_browser_{name} - Browser name.

–  .mwf_browser_{name}_{version} - Browser name and version.

–  .mwf_os_{name} - Device OS name.

–  .mwf_os_{name}_{version} - Device OS name and version.

•  Javascript UI libraries currently available

–  Transitions

–  Touch Transitions

–  Geolocation

•  Loaded on request through JS handler

<script type=“text/javascript” src=“http://m.ucla.edu/assets/
js.php?standard_libs=geolocation&full_libs=transitions
+touch_transitions”></script>

•  More coming soon…

•  Redirect mobile users to mobile site

<script type=”text/javascript” src="http://m.ucla.edu/assets/
redirect/js.php?m={MOBILE_PATH}"></script>

•  Compress images

http://m.ucla.edu/assets/min/img.php?img={IMG_PATH}
&force_device_width&force_device_height

•  Minify CSS and Javascript

http://m.ucla.edu/assets/min/js.php?basic={SCRIPT_1}
&standard={SCRIPT_2}&full={SCRIPT_3}
http://m.ucla.edu/assets/min/css.php?basic={STYLE_1}
&standard={STYLE_2}&full={STYLE_3}

