
Delving into the 

Eric Bollens 
ebollens AT oit.ucla.edu  

Mobile Web Framework Architect 
UCLA Office of Information Technology 

December 14, 2011 



1.  Design Principles 

2.  Architectural Patterns 

3.  Building for Degradation 





•  Markup should be simple and compatible 

–  XHTML MP 1.0 

–  WCSS 

•  Mobile users want information fast 

–  Minimize scrolling 

–  Avoid excess decoration 

–  Short text and icons 

•  Do not clutter the screen 



•  Get the user quickly to where they want 

–  Minimize the number of pages to complete a 
task 

–  Keep the user focused on the current task 

•  Don’t create a mini version of a desktop site 

•  Reconsider movement around the site 



•  Small screen 

–  Tightened focus over less real estate 

•  Touch interface 

–  Multi-touch and gestures 

–  Different sort of interactive experience 

•  Mobility 

–  Locational awareness 

–  Different goals 







•  Encapsulation 

•  Layers 

•  Reusability 

•  Business logic integrity 

•  Interface consistency 



•  Shared Libraries 

•  Model-view-controller (MVC) 

•  Service-oriented architecture (SOA) 



•  Concept 

–  Libraries of functions and/or objects 

–  Separate desktop, tablet and mobile apps 

•  Properties 

–  Reuses objects to accomplish the same task 

–  Consistency if the library is used and maintained 

–  Requires homogeneous environment 



•  Good use cases 

–  Decorators 

–  Session and state management 

–  Data setters and getters 

LibraryDesktop Site Mobile Site



•  Object that encapsulates some element 

–  Methods permute the content of the element 

–  Render method generates the actual output 

•  Use case: 

–  Instantiate the decorator 

–  Modify element attributes 

–  Add contained entities 

–  Render to produce actual HTML output 



•  MWF provides two decorator sets 

–  HTML Decorators 

–  Site Decorators 

•  Site decorators create MWF entities. 

•  MWF entities are semantic HTML. 

–  Can style them in a desktop manner as well. 

–  Can simply define different CSS for desktop. 



•  Using the .menu-full decorator directly 
$decorator = Site_Decorator::menu_full(array(), array('class'=>'main-menu')); 

$decorator->set_title('Menu') 

$decorator->add_item('Item 1', '#1') 

$decorator->add_item('Item 2', '#2') 

$decorator ->add_item('Item 3', '#3') 

$decorator->add_item('Item 4', '#4') 

$decorator->add_item('Item 5', '#5') 

$decorator->render(); 



•  Encapsulate the .menu-full decorator 
class Front_Page_Menu_Full_Site_Decorator extends Menu_Full_Site_Decorator { 

    public function __construct($title = false, $params = array())  { 

        parent::__construct($title, $params); 

        $this->set_param('class', 'main-menu menu-full'); 

        $this->set_title('Menu'); 

        $this->add_item('Item 1', '#1'); 

        $this->add_item('Item 2', '#2'); 

        $this->add_item('Item 3', '#3'); 

        $this->add_item('Item 4', '#4'); 

        $this->add_item('Item 5', '#5'); 

    } 

} 



•  Using the shared library 

 $menu = new Front_Page_Menu_Full_Site_Decorator(); 

echo $menu->render(); 

•  Mobile and desktop sites both define CSS 

–  CSS handler covers the mobile site 

–  Different CSS file for the desktop site 

•  Can consolidate to one invoking script: 

–  Redirect script or User_Agent call 





•  A decorator may use multiple decorators 

–  Many site decorators are tag composites 

–  A page decorator could also be a composite 

–  UC San Diego has a Java-based page decorator 

•  Multi-element decorators are views 

–  Pass a set of data into an encapsulating object 

–  Object renders output based on data 



•  Model 

–  Manages, mediates and manipulates data 

•  View 

–  Encapsulates the user interface 

•  Controller 

–  Bridges model and view with business logic 
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•  Can build one app that supports: 

–  Desktop 

–  Tablet 

–  Mobile 

•  MVC approach: 

–  One set of controllers and models 

–  Different composite views for mobile & desktop 

–  Reuse subviews in different composite views 





•  Views separate rendition from  

–  Business logic  

–  Data models 

•  Going a step further: 

–  One entity handles business logic & data models 

–  Another entity handles rendition 

•  Basis of service-oriented architecture 



•  Service provider 

–  Exposes business logic through service interfaces 

–  Mediates & manipulates data based on services 

•  Service consumer 

–  Invokes services provided by the service provider 

•  Service definition 

–  Contract between provider & consumer 
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•  Service contract 

•  Loose coupling 

•  Abstraction 

•  Reusability 

•  Autonomy 

•  Ganularity 

•  Statelessness 



•  Often implemented through web services 

•  Two common modern protocols: 

–  SOAP 

–  REST 



SOAP 
•  Transport neutral 

•  Message-driven 
•  XML 

•  Complex definition 

•  Verbose semantics 

•  Larger payload 

•  Must parse for AJAX 

REST 

•  HTTP Transport 

•  HTTP URI/Request-driven 

•  XML, JSON, HTML, etc. 

•  Simple definition 

•  Limited semantics 

•  Minimized payload 

•  Can avoid parsing for AJAX 



•  Define business logic behind web services 

•  Client calls web services to perform actions 

•  An analogy back to MVC: 

–  Client ~ View 

–  Service ~ Controller + Models 



•  Design decisions: 

–  REST or SOAP? 

–  XML, JSON or HTML? 

–  Thick or thin client? 

–  Server or browser rendering? 
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•  REST 

–  Simple and easy to implement 

–  Uses HTTP requests and responses 

–  Allows XML, JSON, HTML, etc. 

•  JSON 

–  Smaller payload than XML 

–  No parsing required for Javascript 



•  Thin Client 

–  Reusability 

–  Business logic integrity 

–  Focus client on presentation 

•  Server Rendering 

–  Not all user agents allow Javascript or AJAX 

–  Supplement with AJAX where possible 





•  Not all phones 

–  have the same features 

–  provide access to the same features 

–  provide the same access to the same features 

•  The goal: 

–  Use top-end features when available 

–  Still remain usable for low end devices 

–  Avoid writing two applications 



•  CSS 3 

–  Gradients 

–  Transitions 

•  HTML 5 

–  Forms and Input Types 

–  Semantic Entities 

•  Javascript 

–  DOM Writing 

–  AJAX 

•  Device APIs 

–  Audio 

–  Video 

–  Geolocation 

–  Compass 

–  Accelerometer 

–  Storage 

–  Camera 

–  Web Sockets 



•  Handlers load styles/scripts in three tiers: 

–  Basic 

–  Standard 

–  Full 

•  Degradation further prevalent in: 

–  Geolocation 

–  Transitions 

–  Images 



•  Presentational and cascades 

–  Build up from WCSS definitions to CSS 3 definitions 

–  If CSS 3 definitions aren’t accepted, falls back 

•  A few simple degradations: 

–  Rounded corners can degrade to square 

–  Gradient can degrade to median value 

–  Transitioning areas can degrade to blocks 



•  Only load where it is allowed: 

–  WCSS: Basic 

–  CSS 2.1: Standard 

–  CSS 3: Full 

•  This reduces payload size and validation 
concerns for devices in the classification 



•  HTML 5 introduces new semantics 

•  Rather than use new entities directly: 

–  Use classes on XHTML MP 1.0 elements 

–  Transform to HTML 5 elements where supported 

•  MWF Forms API includes this approach: 

–  https://github.com/ucla/mwf/wiki/Roadmap
%3A-Framework-v1.2%3A-Forms  



•  Live DOM writes not supported universally 

–  Degrades by showing what is visible on load 

–  Use DOM write to change state of elements 

•  AJAX not supported universally 

–  AJAX should be a plus, not a necessity 

–  Define <a href…> to a new page 

–  Override default with AJAX request 

–  Web service can serve to AJAX and new pages 



•  Audio/Video 

–  Pre-HTML 5 semantics don’t include tags 

–  Degrade to other viable players 

–  Least common denominator is error message 

–  MWF will eventually have an Audio/Video API 

•  Geolocation 

–  MWF has abstraction layer for HTML 5 & Gears 

–  GPS failure is treated similarly to no GPS 



•  Compass & Accelerometer 

–  Degradation similar to Geolocation 

–  API will be added to MWF 

•  Storage 

–  Specifications shifting rapidly so use caution 

–  Abstraction layer to handle shifting support 

–  State-saving can be offloaded via AJAX 

–  API will be added to MWF 




