
Delving into the

Eric Bollens
ebollens AT oit.ucla.edu

Mobile Web Framework Architect
UCLA Office of Information Technology

December 14, 2011

1.  Design Principles

2.  Architectural Patterns

3.  Building for Degradation

•  Markup should be simple and compatible

–  XHTML MP 1.0

–  WCSS

•  Mobile users want information fast

–  Minimize scrolling

–  Avoid excess decoration

–  Short text and icons

•  Do not clutter the screen

•  Get the user quickly to where they want

–  Minimize the number of pages to complete a
task

–  Keep the user focused on the current task

•  Don’t create a mini version of a desktop site

•  Reconsider movement around the site

•  Small screen

–  Tightened focus over less real estate

•  Touch interface

–  Multi-touch and gestures

–  Different sort of interactive experience

•  Mobility

–  Locational awareness

–  Different goals

•  Encapsulation

•  Layers

•  Reusability

•  Business logic integrity

•  Interface consistency

•  Shared Libraries

•  Model-view-controller (MVC)

•  Service-oriented architecture (SOA)

•  Concept

–  Libraries of functions and/or objects

–  Separate desktop, tablet and mobile apps

•  Properties

–  Reuses objects to accomplish the same task

–  Consistency if the library is used and maintained

–  Requires homogeneous environment

•  Good use cases

–  Decorators

–  Session and state management

–  Data setters and getters

LibraryDesktop Site Mobile Site

•  Object that encapsulates some element

–  Methods permute the content of the element

–  Render method generates the actual output

•  Use case:

–  Instantiate the decorator

–  Modify element attributes

–  Add contained entities

–  Render to produce actual HTML output

•  MWF provides two decorator sets

–  HTML Decorators

–  Site Decorators

•  Site decorators create MWF entities.

•  MWF entities are semantic HTML.

–  Can style them in a desktop manner as well.

–  Can simply define different CSS for desktop.

•  Using the .menu-full decorator directly
$decorator = Site_Decorator::menu_full(array(), array('class'=>'main-menu'));

$decorator->set_title('Menu')

$decorator->add_item('Item 1', '#1')

$decorator->add_item('Item 2', '#2')

$decorator ->add_item('Item 3', '#3')

$decorator->add_item('Item 4', '#4')

$decorator->add_item('Item 5', '#5')

$decorator->render();

•  Encapsulate the .menu-full decorator
class Front_Page_Menu_Full_Site_Decorator extends Menu_Full_Site_Decorator {

 public function __construct($title = false, $params = array()) {

 parent::__construct($title, $params);

 $this->set_param('class', 'main-menu menu-full');

 $this->set_title('Menu');

 $this->add_item('Item 1', '#1');

 $this->add_item('Item 2', '#2');

 $this->add_item('Item 3', '#3');

 $this->add_item('Item 4', '#4');

 $this->add_item('Item 5', '#5');

 }

}

•  Using the shared library

 $menu = new Front_Page_Menu_Full_Site_Decorator();

echo $menu->render();

•  Mobile and desktop sites both define CSS

–  CSS handler covers the mobile site

–  Different CSS file for the desktop site

•  Can consolidate to one invoking script:

–  Redirect script or User_Agent call

•  A decorator may use multiple decorators

–  Many site decorators are tag composites

–  A page decorator could also be a composite

–  UC San Diego has a Java-based page decorator

•  Multi-element decorators are views

–  Pass a set of data into an encapsulating object

–  Object renders output based on data

•  Model

–  Manages, mediates and manipulates data

•  View

–  Encapsulates the user interface

•  Controller

–  Bridges model and view with business logic

View

Controller

Model

Data

User

View

Controller

Model

Data

User

View

Controller

Model

Data

User

View

Controller

Model

Data

User

View

Controller

Model

Data

User

View

Controller

Model

Data

User

View

View

Controller

Model

Data

User

Composite View

Subview Subview

Model

•  Can build one app that supports:

–  Desktop

–  Tablet

–  Mobile

•  MVC approach:

–  One set of controllers and models

–  Different composite views for mobile & desktop

–  Reuse subviews in different composite views

•  Views separate rendition from

–  Business logic

–  Data models

•  Going a step further:

–  One entity handles business logic & data models

–  Another entity handles rendition

•  Basis of service-oriented architecture

•  Service provider

–  Exposes business logic through service interfaces

–  Mediates & manipulates data based on services

•  Service consumer

–  Invokes services provided by the service provider

•  Service definition

–  Contract between provider & consumer

Service Provider

Service
Contract

Service Consumer

Service Provider

Service
Contract

Service Consumer

User

Service Provider

Service
Request

Service
Contract

Service Consumer

User

Service Provider

Service
Request

Service
Contract

Service Consumer

User

Data

Service Provider

Service
Response

Service
Request

Service
Contract

Service Consumer

User

Data

•  Service contract

•  Loose coupling

•  Abstraction

•  Reusability

•  Autonomy

•  Ganularity

•  Statelessness

•  Often implemented through web services

•  Two common modern protocols:

–  SOAP

–  REST

SOAP
•  Transport neutral

•  Message-driven
•  XML

•  Complex definition

•  Verbose semantics

•  Larger payload

•  Must parse for AJAX

REST

•  HTTP Transport

•  HTTP URI/Request-driven

•  XML, JSON, HTML, etc.

•  Simple definition

•  Limited semantics

•  Minimized payload

•  Can avoid parsing for AJAX

•  Define business logic behind web services

•  Client calls web services to perform actions

•  An analogy back to MVC:

–  Client ~ View

–  Service ~ Controller + Models

•  Design decisions:

–  REST or SOAP?

–  XML, JSON or HTML?

–  Thick or thin client?

–  Server or browser rendering?

•  Design decisions:

–  REST or SOAP?

–  XML, JSON or HTML?

–  Thick or thin client?

–  Server or browser rendering?

•  REST

–  Simple and easy to implement

–  Uses HTTP requests and responses

–  Allows XML, JSON, HTML, etc.

•  JSON

–  Smaller payload than XML

–  No parsing required for Javascript

•  Thin Client

–  Reusability

–  Business logic integrity

–  Focus client on presentation

•  Server Rendering

–  Not all user agents allow Javascript or AJAX

–  Supplement with AJAX where possible

•  Not all phones

–  have the same features

–  provide access to the same features

–  provide the same access to the same features

•  The goal:

–  Use top-end features when available

–  Still remain usable for low end devices

–  Avoid writing two applications

•  CSS 3

–  Gradients

–  Transitions

•  HTML 5

–  Forms and Input Types

–  Semantic Entities

•  Javascript

–  DOM Writing

–  AJAX

•  Device APIs

–  Audio

–  Video

–  Geolocation

–  Compass

–  Accelerometer

–  Storage

–  Camera

–  Web Sockets

•  Handlers load styles/scripts in three tiers:

–  Basic

–  Standard

–  Full

•  Degradation further prevalent in:

–  Geolocation

–  Transitions

–  Images

•  Presentational and cascades

–  Build up from WCSS definitions to CSS 3 definitions

–  If CSS 3 definitions aren’t accepted, falls back

•  A few simple degradations:

–  Rounded corners can degrade to square

–  Gradient can degrade to median value

–  Transitioning areas can degrade to blocks

•  Only load where it is allowed:

–  WCSS: Basic

–  CSS 2.1: Standard

–  CSS 3: Full

•  This reduces payload size and validation
concerns for devices in the classification

•  HTML 5 introduces new semantics

•  Rather than use new entities directly:

–  Use classes on XHTML MP 1.0 elements

–  Transform to HTML 5 elements where supported

•  MWF Forms API includes this approach:

–  https://github.com/ucla/mwf/wiki/Roadmap
%3A-Framework-v1.2%3A-Forms

•  Live DOM writes not supported universally

–  Degrades by showing what is visible on load

–  Use DOM write to change state of elements

•  AJAX not supported universally

–  AJAX should be a plus, not a necessity

–  Define <a href…> to a new page

–  Override default with AJAX request

–  Web service can serve to AJAX and new pages

•  Audio/Video

–  Pre-HTML 5 semantics don’t include tags

–  Degrade to other viable players

–  Least common denominator is error message

–  MWF will eventually have an Audio/Video API

•  Geolocation

–  MWF has abstraction layer for HTML 5 & Gears

–  GPS failure is treated similarly to no GPS

•  Compass & Accelerometer

–  Degradation similar to Geolocation

–  API will be added to MWF

•  Storage

–  Specifications shifting rapidly so use caution

–  Abstraction layer to handle shifting support

–  State-saving can be offloaded via AJAX

–  API will be added to MWF

