
2006 JavaOneSM Conference | Session TS-1238 |

TS-1238

Secure Coding Antipatterns:
Avoiding Vulnerabilities
Andreas Sterbenz
Charlie Lai
Sun Microsystems

Copyright © 2006, Sun Microsystems Inc., All rights reserved.

2006 JavaOneSM Conference | Session TS-1238 | 2

Goal

Learn how to reduce vulnerabilities by
avoiding insecure coding patterns
(antipatterns)

2006 JavaOneSM Conference | Session TS-1238 | 3

What Is a Vulnerability?

Source: http://en.wikipedia.org/wiki/Vulnerability_%28computer_science%29

A weakness in a system allowing an
attacker to violate the integrity,
confidentiality, access control, availability,
consistency or audit mechanism of the
system or the data and applications
it hosts

2006 JavaOneSM Conference | Session TS-1238 | 4

What Causes Vulnerabilities?

● Faulty assumptions in the application architecture
● Errors in configuration
● Incorrect logic
● Insecure programming practices (antipatterns)
● …

This session focuses on antipatterns

2006 JavaOneSM Conference | Session TS-1238 | 5

Secure Coding Antipatterns

● Programming practices you should avoid
● Negative counterpart to a design pattern
● e.g. Implementing methods that don’t validate

input params
● Antipatterns not set in stone

● Generally should avoid them, but there are exceptions
● Make sure you understand the consequences

● Vulnerabilities may exist in various locations
● Application code, shared libraries, Java™ platform

core libraries

2006 JavaOneSM Conference | Session TS-1238 | 6

Antipatterns in C
Versus the Java Language

● C-based antipatterns often exploit buffer
overflows

● Java runtime safely manages memory
● Performs automatic bounds checks on arrays
● No pointer arithmetic

● The Java runtime often executes untrusted code
● Must protect against access to unauthorized resources

● Results in a different set of coding antipatterns
than C

2006 JavaOneSM Conference | Session TS-1238 | 7

How This Presentation Is Organized

● List common coding antipatterns
● For each antipattern:

● Show real example from an older JDK™
software release

● Explain the problem and attack scenario
● Describe the proper secure coding guidelines

● Summary
● URL pointing to more comprehensive list of Java

language secure coding guidelines

2006 JavaOneSM Conference | Session TS-1238 | 8

Common Java Platform Antipatterns

1.Assuming objects are immutable
2.Basing security checks on untrusted sources
3. Ignoring changes to superclasses
4.Neglecting to validate inputs
5.Misusing public static variables
6.Believing a constructor exception destroys

the object

2006 JavaOneSM Conference | Session TS-1238 | 9

Antipattern 1:
Assuming Objects Are Immutable
Example From JDK 1.1 Software

package java.lang;
public class Class {
 private Object[] signers;
 public Object[] getSigners() {

return signers;
 }
}

*Class.getSigners() is actually implemented as a native method, but the behavior is equivalent to the above. See
http://java.sun.com/security/getSigners.html

2006 JavaOneSM Conference | Session TS-1238 | 10

Antipattern 1:
Assuming Objects Are Immutable
Attacker Can Change Signers of a Class

package java.lang;
public class Class {
 private Object[] signers;
 public Object[] getSigners() {

return signers;
 }
}
Object[] signers = this.getClass().getSigners();
signers[0] = <new signer>;

2006 JavaOneSM Conference | Session TS-1238 | 11

Antipattern 1:
Assuming Objects Are Immutable
Problem
● Mutable input and output Objects can be modified

by the caller
● Modifications can cause applications to behave

incorrectly
● Modifications to sensitive security state may

result in elevated privileges for attacker
● E.g. altering the signers of a class can give the class

access to unauthorized resources

2006 JavaOneSM Conference | Session TS-1238 | 12

Antipattern 1:
Assuming Objects Are Immutable
Secure Coding Guidelines

● Make a copy of mutable input parameters
public MyClass(Date start, boolean[] flags) {
 this.start = new Date(start.getTime());
 this.flags = flags.clone();
}

● Make a copy of mutable output parameters
public Object[] getSigners() {
 // signers contains immutable type X509Certificate.
 // shallow copy of array is OK.
 return signers.clone();
}

● Perform deep cloning on arrays if necessary

2006 JavaOneSM Conference | Session TS-1238 | 13

Common Java Platform Antipatterns

1.Assuming objects are immutable
2.Basing security checks on untrusted sources
3. Ignoring changes to superclasses
4.Neglecting to validate inputs
5.Misusing public static variables
6.Believing a constructor exception destroys

the object

2006 JavaOneSM Conference | Session TS-1238 | 14

public RandomAccessFile openFile(final java.io.File f) {
 askUserPermission(f.getPath());
 ...
 return (RandomAccessFile)AccessController.doPrivileged() {
 public Object run() {

 return new RandomAccessFile(f.getPath());
 }
 }
}

Antipattern 2: Basing Security
Checks on Untrusted Sources
Example From JDK 5.0 Software

2006 JavaOneSM Conference | Session TS-1238 | 15

Antipattern 2: Basing Security
Checks on Untrusted Sources
Attacker Can Pass in Subclass of java.io.File
That Overrides getPath()
public RandomAccessFile openFile(final java.io.File f) {
 askUserPermission(f.getPath());
 ...

return new RandomAccessFile(f.getPath());
 ...
}
public class BadFile extends java.io.File {
 private int count;
 public String getPath() {

return (++count == 1) ? “/tmp/foo” : “/etc/passwd”;
 }
}

2006 JavaOneSM Conference | Session TS-1238 | 16

Antipattern 2: Basing Security
Checks on Untrusted Sources
Problem
● Security checks can be fooled if they are based

on information that attackers can control
● It is easy to assume input types defined in the

Java core libraries (like java.io.File) are secure
and can be trusted
● Non-final classes/methods can be subclassed
● Mutable types can be modified

2006 JavaOneSM Conference | Session TS-1238 | 17

● Don’t assume inputs are immutable
● Make defensive copies of non-final or mutable

inputs and perform checks using copies

Antipattern 2: Basing Security
Checks on Untrusted Sources
Secure Coding Guidelines

public RandomAccessFile openFile(File f) {
 final File copy = f.clone();
 askUserPermission(copy.getPath());
 ...

return new RandomAccessFile(copy.getPath());
}

2006 JavaOneSM Conference | Session TS-1238 | 18

Antipattern 2: Basing Security
Checks on Untrusted Sources
Secure Coding Guidelines

● WRONG: clone() copies attacker’s subclass
public RandomAccessFile openFile(java.io.File f) {
 final java.io.File copy = f.clone();
 askUserPermission(copy.getPath());
 ...
}

java.io.File copy = new java.io.File(f.getPath());
● RIGHT

2006 JavaOneSM Conference | Session TS-1238 | 19

Common Java Platform Antipatterns

1.Assuming objects are immutable
2.Basing security checks on untrusted sources
3. Ignoring changes to superclasses
4.Neglecting to validate inputs
5.Misusing public static variables
6.Believing a constructor exception destroys

the object

2006 JavaOneSM Conference | Session TS-1238 | 20

Antipattern 3: Ignoring
Changes to Superclasses
Example From JDK 1.2 Software

put(key, val)
remove(key)

java.util.Hashtable

 extends

java.util.Properties

 extends

java.security.Provider put(key, val) // security check
remove(key) // security check

2006 JavaOneSM Conference | Session TS-1238 | 21

Antipattern 3: Ignoring
Changes to Superclasses
Example From JDK 1.2 Software (Cont.)

put(key, val)
remove(key)
Set entrySet()

java.util.Hashtable

 extends

java.util.Properties

 extends

java.security.Provider put(key, val) // security check
remove(key) // security check

2006 JavaOneSM Conference | Session TS-1238 | 22

Antipattern 3: Ignoring
Changes to Superclasses
Attacker Bypasses remove Method and Uses
Inherited entrySet Method to Delete Properties

put(key, val)
remove(key)
Set entrySet() //supports removal

java.util.Hashtable

 extends

java.util.Properties

 extends

java.security.Provider put(key, val) // security check
remove(key) // security check

2006 JavaOneSM Conference | Session TS-1238 | 23

Antipattern 3: Ignoring
Changes to Superclasses
Problem
● Subclasses cannot guarantee encapsulation

● Superclass may modify behavior of methods that have
not been overridden

● Superclass may add new methods
● Security checks enforced in subclasses can

be bypassed
● Provider.remove security check bypassed if attacker

calls newly inherited entrySet method to
perform removal

2006 JavaOneSM Conference | Session TS-1238 | 24

Antipattern 3: Ignoring
Changes to Superclasses
Secure Coding Guidelines
● Avoid inappropriate subclassing

● Subclass when the inheritance model is well-specified
and well-understood

● Monitor changes to superclasses
● Identify behavioral changes to existing inherited

methods and override if necessary
● Identify new methods and override if necessary

java.security.Provider put(key, value)// security check
 remove(key) // security check
 Set entrySet() // immutable set

2006 JavaOneSM Conference | Session TS-1238 | 25

Common Java Platform Antipatterns

1.Assuming objects are immutable
2.Basing security checks on untrusted sources
3. Ignoring changes to superclasses
4.Neglecting to validate inputs
5.Misusing public static variables
6.Believing a constructor exception destroys

the object

2006 JavaOneSM Conference | Session TS-1238 | 26

Antipattern 4: Neglecting to
Validate Inputs
Example From JDK 1.4 Software

package sun.net.www.protocol.http;
public class HttpURLConnection extends

 java.net.HttpURLConnection {
 /**
 * Set header on HTTP request
 */
 public void setRequestProperty(String key, String value) {

// no input validation on key and value
 }
}

2006 JavaOneSM Conference | Session TS-1238 | 27

Antipattern 4: Neglecting to
Validate Inputs
Attacker Crafts HTTP Headers With Embedded
Requests That Bypass Security

package sun.net.www.protocol.http;
public class HttpURLConnection extends java.net.URLConnection {
 public void setRequestProperty(String key, String value) {

// no input validation on key and value
 }
}
urlConn.setRequestProperty

("Accept",
"*.*\r\n\r\nGET http://victim_host HTTP/1.0\r\n\r\n");

2006 JavaOneSM Conference | Session TS-1238 | 28

Antipattern 4: Neglecting to
Validate Inputs
Embedded Request Bypasses Security Check

Applet
Client
Host

Web
Proxy

Applet
Origin
Host

Victim
Host

GET http://origin_host HTTP/1.0┐
Accept: *.*┐
┐
GET http://victim_host HTTP/1.0┐
┐

GET http://origin_host HTTP/1.0┐
Accept: *.*┐
┐

GET http://victim_host HTTP/1.0┐
┐

InternetIntranet

2006 JavaOneSM Conference | Session TS-1238 | 29

Antipattern 4: Neglecting to
Validate Inputs
Problem
● Creative inputs with out-of-bounds values or

escape characters can be crafted
● Affects code that processes requests or

delegates to subcomponents
● Implements network protocols
● Constructs SQL requests
● Calls shell scripts

● Additional issues when calling native methods
● No automatic array bounds checks

2006 JavaOneSM Conference | Session TS-1238 | 30

Antipattern 4: Neglecting to
Validate Inputs
Secure Coding Guidelines
● Validate inputs

● Check for escape characters
● Check for out-of-bounds values
● Check for malformed requests
● Regular expression API can help validate String inputs

● Pass validated inputs to subcomponents
● Wrap native methods in Java language wrapper to

validate inputs
● Make native methods private

2006 JavaOneSM Conference | Session TS-1238 | 31

Common Java Platform Antipatterns

1.Assuming objects are immutable
2.Basing security checks on untrusted sources
3. Ignoring changes to superclasses
4.Neglecting to validate inputs
5.Misusing public static variables
6.Believing a constructor exception destroys

the object

2006 JavaOneSM Conference | Session TS-1238 | 32

Antipattern 5: Misusing Public
Static Variables
Example From JDK 1.4.2 Software

package org.apache.xpath.compiler;
public class FunctionTable {
 public static FuncLoader m_functions;
}

2006 JavaOneSM Conference | Session TS-1238 | 33

Antipattern 5: Misusing Public
Static Variables
Attacker Can Replace Function Table

package org.apache.xpath.compiler;
public class FunctionTable {
 public static FuncLoader m_functions;
}

FunctionTable.m_functions = <new_table>;

2006 JavaOneSM Conference | Session TS-1238 | 34

Antipattern 5: Misusing Public
Static Variables
Problem
● Sensitive static state can be modified by

untrusted code
● Replacing the function table gives attackers access to

the XPathContext used to evaluate XPath expressions
● Static variables are global across a Java runtime

environment
● Can be used as a communication channel between

different application domains (e.g. by code loaded into
different class loaders)

2006 JavaOneSM Conference | Session TS-1238 | 35

Antipattern 5: Misusing Public
Static Variables
Secure Coding Guidelines

● Reduce the scope of static fields
private static FuncLoader m_functions;

● Treat public statics primarily as constants
● Consider using enum types
● Make public static fields final
public class MyClass {
 public static final int LEFT = 1;
 public static final int RIGHT = 2;
}

2006 JavaOneSM Conference | Session TS-1238 | 36

Antipattern 5: Misusing Public
Static Variables
Secure Coding Guidelines
● Define accessor methods for mutable static state

● Add appropriate security checks

public class MyClass {
 private static byte[] data;
 public static byte[] getData() {

return data.clone();
 }
 public static void setData(byte[] b) {

securityCheck();
data = b.clone();

 }
}

2006 JavaOneSM Conference | Session TS-1238 | 37

Common Java Platform Antipatterns

1.Assuming objects are immutable
2.Basing security checks on untrusted sources
3. Ignoring changes to superclasses
4.Neglecting to validate inputs
5.Misusing public static variables
6.Believing a constructor exception destroys

the object

2006 JavaOneSM Conference | Session TS-1238 | 38

Antipattern 6: Believing a Constructor
Exception Destroys the Object

package java.lang;
public class ClassLoader {
 public ClassLoader() {

// permission needed to create class loader
securityCheck();
init();

 }
}

Example From JDK 1.0.2 Software

2006 JavaOneSM Conference | Session TS-1238 | 39

Antipattern 6: Believing a Constructor
Exception Destroys the Object

package java.lang;
public class ClassLoader {
 public ClassLoader() {

securityCheck();
init();

 }
}

public class MyCL extends ClassLoader {
 static ClassLoader cl;
 protected void finalize() {

cl = this;
 }
 public static void main(String[] s) {

try {
 new MyCL()
} catch (Exception e) { }
System.gc();
System.runFinalization();
System.out.println(cl);

 }
}

Attacker Overrides Finalize to Get Partially
Initialized ClassLoader Instance

2006 JavaOneSM Conference | Session TS-1238 | 40

Antipattern 6: Believing a Constructor
Exception Destroys the Object
Problem
● Throwing an exception from a constructor does

not prevent a partially initialized instance from
being acquired
● Attacker can override finalize method to obtain

the object
● Constructors that call into outside code often

naively propagate exceptions
● Enables the same attack as if the constructor directly

threw the exception

2006 JavaOneSM Conference | Session TS-1238 | 41

Antipattern 6: Believing a Constructor
Exception Destroys the Object

public class ClassLoader {
 private boolean initialized = false;
 ClassLoader() {

securityCheck();
init();
initialized = true; // check flag in all relevant methods

 }
}

Secure Coding Guidelines
● Make class final if possible
● If finalize method can be overridden, ensure

partially initialized instances are unusable
● Do not set fields until all checks have completed
● Use an initialized flag

2006 JavaOneSM Conference | Session TS-1238 | 42

Summary

● Vulnerabilities are a concern for all developers
● Can have severe impacts on security and privacy

● Follow secure coding guidelines to reduce
vulnerabilities
● Encourages secure programming from the outset
● Helps limit bad assumptions that might be made
● Avoids common antipatterns

2006 JavaOneSM Conference | Session TS-1238 | 43

For More Information

● Contact the Java SE Security Team
with comments
● java-security@sun.com

● Meet the Java SE Security Team
● 10:30pm, May 18, Gateway 102/103

● Secure coding guidelines for Java technology
● http://java.sun.com/security/seccodeguide.html

● Currently being updated, new version to be posted soon

2006 JavaOneSM Conference | Session TS-1238 | 44

Acknowledgements

● Secure Internet Programming group
at Princeton University
● Dirk Balfanz, Drew Dean, Edward W. Felten, and

Dan Wallach
● Marc Schönefeld
● Harmen van der Wal

2006 JavaOneSM Conference | Session TS-1238 | 45

Q&A

2006 JavaOneSM Conference | Session TS-1238 |

TS-1238

Secure Coding Antipatterns:
Avoiding Vulnerabilities
Andreas Sterbenz
Charlie Lai
Sun Microsystems

